

It helps if you draw a line in the bottom blank space like the orange one when you multiply so that you do not forget to divide.

1) FACTOR $x^2 - 8x + 10$ Factors of 10 that add to give you 8 Does not factor so it is prime

2) FACTOR
$$5x^2 - 6x - 8$$
 *example above
slide and divide $x^2 - 6x - 40$ factors of 40 that subtract to give you 18
 $(x-10)(x+4)$ then divide by 5 and reduce
5 5
Put it back into parentheses $(x-2)(5x+4)$ *bottom # goes in front
3) FACTOR 27 - $3x^2$ GCF then difference between two squares
 $3(9 - x^2)$
 $3(3-x)(3+x)$

5)
$$(x+13)^2 -7(x+13)$$
 *think of factoring a out of $a^2 - 7a$
 $(x+13)(x+13-7)$ $a(a-7)$
Then simplify $(x+13)(x+6)$

6) Which equation is set up for direct use of the zero-factor property? Solve it.

A.
$$5x^{2} - 8x - 4 = 0$$

C. $x^{2} + x = 42$
B. $(8x + 9)^{2} = 3$
D. $(5x - 2)(x - 8) = 0$
 $5x - 2 = 0$
 $x - 8 = 0$
 $x = \frac{2}{5}, 8$

7) SOLVE -means give $x = answer x^2 - 15x = 0$ Factor the x out first x(x - 15) = 0

> Then set each equal to zero x = 0 and x - 15 = 0x = 0 and x = 15

8) **SOLVE** – $x^2 - 225 = 0$

Difference of two squares (x - 15)(x + 15) = 0

Then set each equal to zero x = 15 and x = -15

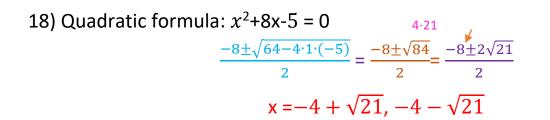
9) SOLVE $z^2 + 2z - 35 = 0$ Factors of 35 that subtract to get 2, higher # is first sign (z-5)(z+7) = 0 x = 5 and x = -7

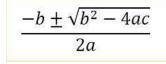
10) SOLVE $9x^2 - 80x - 9 = 0$ *example in box top of page slide and divide $x^2 - 80x - 81 = 0$ (x-81)(x+1) then divide by 9 and reduce 9 9 x = 9 and $x = -\frac{1}{9}$

- 11) SOLVE $5x^2 45 = 0 \rightarrow GCF$ $5(x^2 9) = 0$ Difference of two squares 5(x - 3)(x + 3) = 0x = 3 and x = -3 drop the 5 because it has no variable
- 12) SOLVE x(x 7) + 10 = 0 distribute to get into factored form $x^2 - 7x + 10 = 0$ (x - 5)(x - 2) = 0x = 5 and x = 2

13) SOLVE
$$49x^2 + 4 = 28x \rightarrow \text{move } 28x \text{ to left}$$

 $49x^2 - 28x + 4 = 0$ square root of first and last
 $(7x - 2)(7x - 2) = 0$ check with FOIL
 $x = \frac{2}{7}$ do not duplicate answer


14) $28 (p^2 - 1) = 33p$ distribute to get into factored form $28p^2 - 28 = 33p$ Then move 33p to left $28p^2 - 33p - 28 = 0$ SAME first and last number: closest two factors put larger on outside and smaller on the inside negative goes on the right side. Do foil to check Factor (7p + 4)(4p - 7) = 0 $x = -\frac{4}{7}, \frac{7}{4}$


16) $x^2 = 25$ take square root, must have + and - x = -5,5

17)
$$(2y+3)^2 = 9$$
 Take the square root of 9, **must have + and** -
 $2y+3=3$ and $2y+3=-3$
 $2y = 0$ $2y = -6$
 $y = 0$ $y = -3$
EX) $(3y+9)^2 = 81$ Take the square root if 81, **must have + and** -
 $3y+9=9$ and $3y+9=-9$

3y = 0 3y = -18

y =0 y = -6

19) Quadratic formula: $2x^2$ - 11x + 15 = 0 $\frac{11 \pm \sqrt{121 - 4 \cdot 2 \cdot (15)}}{2(2)} = \frac{11 \pm \sqrt{1}}{4} = \frac{11 + 1}{4} = 3 \text{ and } \frac{11 - 1}{4} = \frac{5}{2}$ OR SLIDE AND DIVIDE x^2 -11x + 30

(x-5)(x-6) then divide by 2 and reduce

$$2 2 x = \frac{5}{2} and 3$$

20) Quadratic formula: $9y^2-y+7 = 0$

$$\frac{1 \pm \sqrt{1 - 4 \cdot 9 \cdot 7}}{18} = \frac{1 \pm \sqrt{-251}}{18}$$

Cannot have a negative under the radical **NO SOLUTION**

Another example: Quadratic formula: $2y^2 - y + 8 = 0$ $\frac{1 \pm \sqrt{1 - 4 \cdot 2 \cdot (8)}}{2} = \frac{8 \pm \sqrt{-63}}{2}$

Cannot have a negative under the radical **NO SOLUTION**

21) Quadratic formula: $3x^2 = 1-7x$ Put in correct form: $3x^2 + 7x - 1 = 0$

$$\frac{-7\pm\sqrt{49-4\cdot3\cdot(-1)}}{2(3)} = \frac{-7\pm\sqrt{61}}{6}$$

22)
$$5x^2 = 6x$$

 $5x^2 - 6x = 0$
GCF x(5x - 6) = 0
x = 0 x = $\frac{6}{5}$

23) Quadratic formula: $\frac{2}{9}x^2 - x - \frac{1}{9} = 0$ Multiply by 9 first $2x^2 - 9x - 1 = 0$ $\frac{9 \pm \sqrt{81 - 4 \cdot 2 \cdot (-1)}}{4} = \frac{9 \pm \sqrt{89}}{4}$ $x = \frac{9 + \sqrt{89}}{4}, \frac{9 - \sqrt{89}}{4}$

24) Quadratic formula:
$$x^2 - 2x - 1 = 0$$

 $\frac{2\pm\sqrt{4-4\cdot 1\cdot (-1)}}{2} = \frac{2\pm\sqrt{8}}{2} = \frac{2\pm2\sqrt{2}}{2}$
 $x = 1 + \sqrt{2}, 1 - \sqrt{2}$

25) 81x² - 18x - 1 = 0 (9x-1)(9x-1) * since the last number is one we can factor the first term

Watch the video that describes Unifying Quadratic Functions.

Click here to watch the video.

If a function f(x) is quadratic, explain how to find the solution to f(x) = 0 graphically.

····

Choose the correct answer below.

- A. Find any x-intercepts. The x-coordinates are the solutions.
- B. A solution to this equation is 0.
- O C. Find any y-intercepts. The y-coordinates are the solutions.
- 27) A rectangular garden has length of 9 feet greater than the width. Find the length and width if the area is 400ft²?

Let l = w+9 w (w+9) = 400 w² +9x - 400 = 0 (w+25) (w-16) then w = 16 width is 16ft and length is 25ft

- 28) A ball is thrown vertically upward from a building 128 ft tall with initial velocity of 112 ft/sec. The distance s (in feet) of the ball from the ground after t seconds is $s = 128 + 112t - 16t^2$
 - a) After how many seconds does the ball hit the ground?

$$-16t^{2} + 112t + 128=0$$

-16(t² - 7t - 8) =0
(t-8) (t-1) =0 t = 8 seconds

b) After how many seconds does the ball pass the top of the building on its way down?

7 seconds

$$-16t^{2} + 112t + 128 = 128$$

 $112t = 16t^{2}$
 $16t (t-7)=0$ $t =$

MORE EXAMPLES USING PATTERNS:

a) $25x^{2} - 40x + 16 = 0$ (5x - 4)(5x - 4) = 0 square root of first and last FOIL to check 5x-4 = 0 5x-4 = 0 $x = \frac{4}{5}$ c) $72x - 17 = \frac{72}{x}$ Multiply all by x $72x^{2} - 17x - 72 = 0$ (9x + 8)(8x - 9) = 0 $x = -\frac{5}{9}, \frac{9}{5}$

d)
$$\frac{7(x-3)}{x-4} + \frac{2}{x} = \frac{-2}{x(x-4)}$$
 Multiply all by x(x-4) to get
 $7x(x-3) + 2(x-4) = -2$ Then solve for $7x^2 - 21x + 2x - 8 = -2$
 $7x^2 - 19x - 6 = 0$
 $(7x+2)(x-3)$ $x = -\frac{2}{7}, 3$

e) Quadratic formula:
$$3x^2 = 4x$$

 $3x^2 - 4x = 0$
 $x(3x - 4) = 0$
 $x = 0, \frac{4}{3}$

f) Quadratic formula:
$$5 - \frac{1}{x} - \frac{3}{x^2}$$
 Multiply all by $x^2 \quad 5x^2 - x - 3 = 0$
$$\frac{1 \pm \sqrt{1 - 4 \cdot 5 \cdot (-3)}}{2(5)} = \frac{1 \pm \sqrt{61}}{10}$$

g) Quadratic formula:
$$\frac{3x}{x-2} + \frac{1}{x} = 4$$

 $3x^2 + x - 2 = 4x^2 - 8x \rightarrow 0 = x^2 - 9x + 2$
 $\frac{9 \pm \sqrt{81 - 4 \cdot 1 \cdot (2)}}{2}$
 $x = \frac{9 + \sqrt{73}}{2}, \frac{9 - \sqrt{73}}{2}$

h) $x^2 - 14 = 0$ take square root $x^2 = 14$ $x = -\sqrt{14}, \sqrt{14}$

i)
$$9x^2 - 6x + 1 = 0$$
 slide and divide $x^2 - 6x + 9 = 0$
(x - 3)(x - 3) = 0 divide by 9
 $x = \frac{1}{3}$

j) $10x^2$ - 19x - 15 = 0 slide and divide x^2 - 19x - 150 = 0 (x - 25)(x + 6) = 0 divide by 10 $x = -\frac{5}{2}, \frac{3}{5}$

k)
$$5 + 23z = 10 x^2 \rightarrow 0 = 10z^2 - 23x - 5 = 0$$
 move everything to the left
slide and divide $z^2 - 23x - 50 - 0$
 $(z + 2)(z - 25) = 0$ divide by 10
 $x = -\frac{1}{5}, \frac{5}{2}$

I) $x^2 - x = 1$ Put in correct form: $x^2 - x - 1 = 0$

$$\frac{1\pm\sqrt{1-4\cdot1\cdot(-1)}}{2} = \frac{1\pm\sqrt{5}}{2}$$

m)

Quadratic formula: 2x(x + 1) = 3 Put in correct form: $2x^2 + 2x - 3 = 0$

$$\frac{-2\pm\sqrt{4-4\cdot2\cdot(-3)}}{2(2)} = \frac{-2\pm\sqrt{28}}{4} = \frac{-2\pm2\sqrt{7}}{4}$$

$$x = \frac{-1+\sqrt{7}}{2}, \frac{-1-\sqrt{7}}{2}$$

n)
$$\left(\frac{x}{x-4} + \frac{4}{x+1} = \frac{19x-1}{x^2-3x-4}\right)$$

(x-4)(x+1)
multiply each numerator by what is in the green but not in the denominator
 $x(x+1)+4(x-4) = 19x-1$
Then solve for x²+x+4x-16=19x-1
 $x^2-14x-15=0$
(x+1)(x-15) = 0
x = -1 but (-1+1)=0 which makes it undefined; therefore x = 15